Music Genre Recognition Using Gabor Filters and LPQ Texture Descriptors

نویسندگان

  • Yandre M. G. Costa
  • Luiz Eduardo Soares de Oliveira
  • Alessandro L. Koerich
  • Fabien Gouyon
چکیده

This paper presents a novel approach for automatic music genre recognition in the visual domain that uses two texture descriptors. For this, the audio signal is converted into spectrograms and then textural features are extracted from this visual representation. Gabor filters and LPQ texture descriptors were used to capture the spectrogram content. In order to evaluate the performance of local feature extraction, some different zoning mechanisms were taken into account. The experiments were performed on the Latin Music Database. At the end, we have shown that the SVM classifier trained with LPQ is able to achieve a recognition rate above 80%. This rate is among the best results ever presented in the literature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple local feature representations and their fusion based on an SVR model for iris recognition using optimized Gabor filters

Gabor descriptors have been widely used in iris texture representations. However, fixed basic Gabor functions cannot match the changing nature of diverse iris datasets. Furthermore, a single form of iris feature cannot overcome difficulties in iris recognition, such as illumination variations, environmental conditions, and device variations. This paper provides multiple local feature representa...

متن کامل

An evaluation of Convolutional Neural Networks for music classification using spectrograms

Music genre recognition based on visual representation has been successfully explored over the last years. Classifiers trained with textural descriptors (e.g., Local Binary Patterns, Local Phase Quantization, and Gabor filters) extracted from the spectrograms have achieved state-of-the-art results on several music datasets. In this work, though, we argue that we can go further with the time-fre...

متن کامل

Spatiotemporal Gabor filters: a new method for dynamic texture recognition

This paper presents a new method for dynamic texture recognition based on spatiotemporal Gabor filters. Dynamic textures have emerged as a new field of investigation that extends the concept of self-similarity of texture image to the spatiotemporal domain. To model a dynamic texture, we convolve the sequence of images to a bank of spatiotemporal Gabor filters. For each response, a feature vecto...

متن کامل

Gabor Filters and Grey-level Co-occurrence Matrices in Texture Classification

Texture classification is a problem that has been studied and tested using different methods due to its valuable usage in various pattern recognition problems, such as wood recognition and rock classification. The Grey-level Co-occurrence Matrices (GLCM) and Gabor filters are both popular techniques used on texture classification. This paper combines both techniques in order to increase the acc...

متن کامل

A Framework for Analyzing Texture Descriptors

This paper presents a new unified framework for texture descriptors such as Local Binary Patterns (LBP) and Maximum Response 8 (MR8) that are based on histograms of local pixel neighborhood properties. This framework is enabled by a novel filter based approach to the LBP operator which shows that it can be seen as a special filter based texture operator. Using the proposed framework, the filter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013